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In this paper we focus on targets which, in addition to reflecting
signals themselves, also have a trailing path behind them, called
a wake, which causes additional detections. When the detections
are fed to a tracking system like the probabilistic data association
filter (PDAF), the estimated track can be misled and sometimes
lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are
operating close to each other in the presence of wakes. To prevent
this, we have developed a probabilistic model of the wakes in a
multitarget environment. This model is used to augment the joint
probabilistic data association filter (JPDAF) for both coupled and
decoupled filtering.

This paper provides a systematic comparison of the standard
data association filters (PDAF and JPDAF) and their modified
versions presented here in a multitarget multisensor environment.
Simulations of two targets with wakes in four different scenarios
show that this modification gives good results and the probability
of lost tracks is significantly reduced. The targets are observed by
two sensors and it is shown that tracks estimated in a centralized
fusion configuration are better than those from the local sensors.
It is also shown that applying the wake model to targets that do
not generate a wake, yields almost no deterioration of the tracking
performance.
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1. INTRODUCTION

Targets in real tracking scenarios may be detected
by their reflection of signals emitted from a radar [6], a
sonar [26], or by the use of optical sensors [24]. In addi-
tion to target-originated measurements there will also be
a number of detections due to noise and clutter, called
false alarms. A well-known tracking method to handle
targets in clutter is the probabilistic data association fil-
ter (PDAF) [3, ch. 3.4]. The PDAF accounts for the
measurement origin uncertainty by calculating for each
validated measurement at the current time the associa-
tion probabilities to the target of interest.

In a multitarget environment [5] the association of
measurements is more problematic because the indi-
vidual targets no longer can be considered separately
as in the PDAF. For this purpose the joint probabilis-
tic data association filter (JPDAF) [3, ch. 6.2], [14]
was developed to consider a known number of tar-
gets in the data association simultaneously. This method
evaluates the measurement-to-target association prob-
abilities for the latest set of measurements and then
combines them into the state estimates. In the JPDAF
the targets’ states, conditioned on the past, are as-
sumed independently distributed so that filtering can be
done decoupled. As an alternative, the targets’ states,
given the past, can be considered as correlated. This
leads to the joint probabilistic data association cou-
pled filter (JPDACF) [2], [3, pp. 328-329], where the
correlation between the targets’ estimation errors is
accounted for. A modified version of the JPDACEF,
called coupled data association filter (CPDA), was pre-
sented in [9] to also account for partial target detec-
tions. In this paper an equivalent filter to the CPDA,
but where the covariance calculation is in symmetri-
cal form (to avoid numerical problems experienced by
the CPDA), is modified to also account for targets in
the presence of wakes. This filter is called modified
JPDACF.

A more powerful source of false measurements than
those due to noise and clutter, is the wake phenomenon
that appears behind certain targets. This could be air
bubbles from a diver, the wake behind a ship, or the
wake from ballistic vehicles in the re-entry stage. One
possible approach to this problem is to handle both
the target and the wake behind it as an extended tar-
get. A problem with this approach is the varying and
unknown size of the wake which may reach far be-
hind the target yielding a large bias. In this paper the
wake is not considered as part of the target, but rather
as a special kind of clutter. When these measurements
are fed to the tracking system, it becomes important
to associate them correctly to prevent a lost track. In
[1] a probabilistic editing method is used to handle
the wake-dominated measurements in the tracking al-
gorithm. This probabilistic editing method is based on
a single measurement extracted for each time step, and
that this measurement originates from either the tar-
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get or the wake. In [21] a modified PDAF is devel-
oped to handle false measurements originating from the
bubbles behind a diver (the wake). This modified sin-
gle target tracking method does not restrict the num-
ber of false measurements for each time step, but as-
sumes a set of measurements where each false mea-
surement originates from either random clutter or the
wake. In this paper we extend the modified PDAF to
handle multiple targets in the presence of wakes. A
probabilistic wake model is used for each target in
the multitarget environment that has a wake behind it.
These single wake models are combined to form a joint
wake model, and the modified JPDAF and JPDACF
are developed to incorporate this additional joint wake
model.

In recent years there has been an extensive inter-
est in using multiple sensors in surveillance systems.
This leads to data fusion where there exist several pos-
sible configurations [3, ch. 8.2]. Primarily due to the
bandwidth constraints in real systems, it is sometimes
not feasible to transmit all measurement information
to a fusion center (centralized configuration). Instead,
only local estimates are transmitted to a fusion cen-
ter (at a reduced rate), and a track-to-track associa-
tion followed by track fusion is carried out (decen-
tralized configuration). However, the best performance
is achieved using the centralized configurations where
all measurements are transmitted from the local sen-
sors to a fusion center. In this paper we use the cen-
tralized configuration with sequential filtering [3, p.
88] where the global estimate is updated by the mea-
surements from each local sensor, one sensor at the
time.

In Section 2 the tracking problem in the presence
of a wake is reviewed for a single target. In Section 3
the modified JPDAF is developed for a multitarget
environment, and the modified version of the JPDACEF,
which accounts for partial target detections, is derived.
In Section 4 a brief review of multisensor tracking is
given. The data association methods are then compared
in Section 5 by simulations of two targets with wakes in
four different multisensor scenarios, before conclusions
are given in Section 6.

2. BACKGROUND

2.1. Model of Tracking

The standard discrete linear model in tracking is

X = Fx + vy, e = Hxy +wy, (@))]
where

X: target state F: transition matrix
Z: measurement measurement matrix
V@ process noise w: measurement noise

k: time index

The process and measurement noises are assumed inde-
pendent, white and Gaussian with covariance matrices

E{vo{}=0 2)

For this system, a Kalman filter is optimal as long as the
measurement z, originates from the target at each time
k. In many real world problems this is unfortunately
not true due to the presence of false measurements
originating from noise and clutter. Instead, a set of my,
measurements Z, = {z,(1),z,(2),...,z,(m;)} is available
at time k so that data association is needed. A simple
and efficient method to solve this problem is the PDAF.

and  E{wwj}=R.

2.2. Standard PDAF

The approach of the PDAF is to calculate the as-
sociation probabilities for each validated measurement
(that falls in a gate around the predicted measurement)
at the current time to the target of interest. The pos-
terior track probability density is therefore a mixture
of Gaussian probability density functions (pdf), but is
then forced back to Gaussianity by moment-matching
for the succeeding scan. For a derivation of the PDAF
see [3, ch. 3.4], and in the following a brief overview
of the PDAF will be given.

Assume that the target state at time k — 1 is estimated
as %k71|k71 with associated covariance F_;_;. This
means that the estimate is conditioned on the entire past
up to time k — 1. Then the following assumptions are
made:

a) The track is already initialized.
b) The past information about the target is summa-
rized approximately by the Gaussian pdf

plx | 25 QN(xk;)%k\k—l’Pk\kfl) 3

where

ZM1=1Z70.2,,...Z, \}. )

¢) A validation region or gate is set up for each time
step to select the candidate measurements for associa-
tion.

d) At time k there are m, validated measurements
but at most one of them can be target-originated. The
rest are assumed to be due to i.i.d. uniformly spatially
distributed false alarms, independently across time.

e) Detections of the real target occur independently
over time with known detection probability F;.

At each time k, the algorithm goes through the following
steps:

1) Predict the target state, associated covariance and
measurement at time k based on the estimates at k — 1:

)%k\kfl = F;Ckfl\kfl
By_1 =FB_j F' +0 &)

Llk—1 = ka\k—l'
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Ilustration of the pdfs for the measurements originating from the target, noise or wake in: (a) regular PDAF, (b) modified PDAF

with wake model.

2) Compute the innovation covariance for the true
(target-originated) measurement

(6)

and use S, to form the measurement validation gate
where the validated measurements Z, result in m, in-
novations:

Sy =HBy H" +R

i=1,.. @)

3) Calculate the association probabilities 3,(7), i =
1,...,m, that measurement z, (i) originates from the true
target, and 3, (0) as the probability that all measurements
are false alarms

l/k(i) = Zk(i) - 2k|k71 LMy,

ce— (/20" )

1-P;PB,
Viby

Gi(i) =

c|27S, |2 my

(8)
Here ¢ is a normalizing constant to ensure that
S B(i) =1, V, is the volume of the gate and Fj; is
the probability that the true measurement falls inside
the gate. In (8) a diffuse prior [3, p.135] is used for
the point mass function (pmf) of the number of false
measurements in the validation region.
4) Calculate the Kalman gain and the combined
innovation

and  y = Zﬁk(i)uk(i)

i=1

W = Pk\k—lHTSl;1
)
to update the track according to
X = Xt + Wy (10)
5) The state estimation covariance is updated by
Bc\k = ﬁk(O)Pk\kfl
+[1 = B OI(Be1 — WS W)

my
+ W [ Bl D ) = vl | W
i=0

(11D

where the last term in (11) is the “spread of the inno-
vations.”

2.3. Modified PDAF

Targets with a wake behind them may cause detec-
tions from the wake that mislead the tracking algorithm
and are likely to result in a lost track. This is because
the uniform distribution assumption for the false mea-
surements (assumption (d) in Section 2.2) is violated.
To prevent this, an extension of the regular PDAF in-
corporating a special probabilistic model of the wake
was developed in [21]. The PDAF with the wake model
is illustrated in Fig. 1. The modified PDAF takes into
account that the false measurements can originate from
either the wake with pdf py,(-) with a priori probability
By, or from i.i.d. uniformly distributed noise/clutter with
a priori probability 1 — B, independently across time.
This modification affects the PDA in the calculation of
the 3,(7) in (8) and yields

o U@ i)

c i=1,...,m
v | he s By
B = . Vi PGWpW ¢
1-P.P
278, |"2m, —-S2 i=0
(25
(12)

The bracketed parenthesis in the denominator in 3, (i)
fori=1,...,my is the pdf of a false measurement

p(z,(i) | measurement i is false)

1-B, B, .
= + —
v, PGpr(Zk(l))

(13)

where Fy, is used to account for restricting the density
of the wake model py,(z,(i)) to the validation gate. The
calculation of F,y, for a linear py,(-) is presented in detail
in [21]. As expected, in the limit as F,, goes to zero, (12)
becomes (8).

2.4. Track Formation and Termination

The data association filters discussed above assume
that the track is already initialized, and when a track
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is established, there are no included rules for how to
terminate the track. Hence, procedures for formation
and termination of tracks are necessary. A simple and
common method to initialize tracks is the two-point
differencing method [4, p. 247]. Any successive pair of
detections within a maximum distance based on target
maximum motion parameters and measurement noise
variances initiates a preliminary track. This preliminary
track, containing the initial state and the corresponding
covariance, can now initialize the PDAF. To reduce
the amount of false tracks, a “p/q” logic-based track
formation procedure can be used. In this procedure a
preliminary track has to receive measurements for a
minimum of p time steps during the first ¢ scans to
become valid.

To terminate a track a logic suitable for the applica-
tion is needed, and a set of rules has to be made. The
rules used in this paper, called termination events, are
described in Section 5.4. It should also be noted that
in some filters, such as the integrated probabilistic data
association filter (IPDAF) [18] or the version of the in-
teracting multiple model probabilistic data association
filter IMMPDAF) presented in [3, ch. 4.4], the track
formation and termination are included.

3. PROBABILISTIC DATA ASSOCIATION FOR
MULTIPLE TARGETS IN THE PRESENCE OF
WAKES

In a multitarget environment the data association al-
gorithm needs to handle situations where a measure-
ment could originate from different targets. For this pur-
pose, the JPDAF was developed, and a derivation of this
standard algorithm is given in [3, ch. 6.2]. Another prob-
lem arises when these targets have wakes behind them
that result in misleading wake detections. In this section
we will modify the JPDAF to handle this problem.

3.1.  Assumptions

Assume there is a known number N, of established
targets at time k — 1. Notice that these targets are already
initialized, e.g., by the method in Section 2.2. For each
target ¢, where t = 1,...,N,, the target state is estimated
as 25(71‘ 1 With associated covariance B k-1 Then the
following assumptions are made:

a) Measurements from one target can fall in the
validation gate of a neighboring target.

b) The past information about target 7 is summarized
approximately by the Gaussian pdf

PO | Z5 D) = N, X1 Bi—1)-

¢) At time k there are m, validated measurements in
the union of their validation gates, but for each target ¢
at most one measurement can be target-originated. The
rest are assumed to be due to the wakes with pdf py,(-)
with a priori probability £y, or from i.i.d. uniformly

(14)

120
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Fig. 2. Probability density functions for two targets with crossing
trajectories. The distributions of the targets are Gaussian and overlap
each other. Each wake behind the two targets is modeled as a pdf,
linearly increasing from the target and backwards, and the sum of
each single target’s wake model forms the joint wake model. The
noise/clutter is uniformly spatially distributed inside the joint
validation region.

distributed noise/clutter with a priori probability 1 — B,
independently across time.

In Fig. 2 an example of the pdfs for two targets that are
starting to cross each other is shown. Here both targets
have a wake behind them, and the joint wake model
(the sum of each target’s single wake model) increases
linearly behind the targets inside the joint validation re-
gion. The joint validation region contains all the candi-
date measurements, and restricts the spatially uniform
distribution representing the noise/clutter. It should be
noted that the linearly increasing wake models are not
developed to approach the true density of the wake since
the wake density would seemingly be higher close to
the targets rather than farther away. Such an approach
would easily misassociate true target-originated mea-
surements as wake-originated ones. At the same time,
in practice, a false wake-originated measurement is less
detrimental when it is very close to the true target than
farther behind. The adopted wake model is therefore
a pragmatic approach to let the probability of hav-
ing a wake-originated measurement instead of a target-
originated one increase with the distance behind the true
target. Further details about the joint wake model and
the validation region are given in Appendix A.

3.2. Joint Association Events

Define the validation matrix €2 to represent all fea-
sible association events at time k (the time index k is
omitted for simplicity where it does not cause confu-
sion)

Q=[w(.n] j=1,...m and 1=0,....N,.

(15)
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Fig. 3. Two targets with a measurement in the intersection of their
validation gates are shown with corresponding validation matrix 2.

Here, w(j,t) is a binary element indicating whether mea-
surement j lies in the validation gate of target 7. The
index t = 0 means that the measurement is from none
of the targets and therefore it is a false measurement. An
example where a measurement may originate from ei-
ther of two targets, i.e., it lies in both targets’ validation
gates, is shown with the corresponding validation ma-
trix 2 in Fig. 3. For all these possible joint association
events, conditional probabilities have to be derived.

A joint association event © describes an unambigu-
ous association between the measurements and the tar-
gets at time k

m
0 = (6G.1) (16)
j=1

where

e 0(j,1;) is the event that measurement j originates from
target 7;.

e 1; is the index of the target to which measurement j
is associated in the event under consideration.

The event © can also be represented by the matrix
Q@ = [W(_)(J,t)]

consisting of the units in 2 corresponding to the asso-
ciations in ©

w(—)(j’t) = {

a7

1 if the event 6(j,¢) is part of ©
0 otherwise .
(18)

Using this, a feasible association event needs to fulfill
the following requirements:

1) A measurement can have only one source, i.e.

Nr
> welin=1 Y. (19)
t=0

2) At most one measurement can originate from a
target

662> wol <1
j=1

t=1,....N..  (20)

The binary variable 0 is called the target detection
indicator since it indicates whether a measurement is

associated to a target ¢ or not in event O. It is also
convenient to define two more binary variables

Nr
o)=Y welin1) @1

t=1

m

b6 = > [1—76())]

j=1

(22)

where 74(j) is the measurement association indicator
to indicate if measurement j is associated to a target
or not, and ¢, is the number of false (unassociated)
measurements in event ©.

3.3. Modified JPDAF with a Wake Model

The joint association event probabilities are derived
using Bayes’ formula

P{O, |Zk} = P{©, |Zk7mk7zk_l}

1 _ _
EP[Zk \ @k7mk7zk l]P{ek |Zk lvmk}

%p[Zk | ©,,m, Z51P{O, |m}  (23)
where ¢ is a normalizing constant. In the last line of
the above equation the irrelevant conditioning term Z*~!
has been omitted. The pdf of the measurements in (23)
is derived by assuming that the states of the targets,
conditioned on the past observations, are mutually in-
dependent

PIZ; | ©pm, Z8 11 = [ [ Pl | 6,6, 2511,
j=1
(24)

Measurements not associated to a target are assumed
either from the wakes with pdf py,(z,(j)) with a priori
probability By, or from uniformly distributed noise/
clutter with a priori probability (1 —F,). Defining V,
as the volume of the joint validation gate, the pdf of a
measurement given its origin is

Pla | 6,G1).Z5 1]

Nz (D32 1-5¢] if 76,(j)=1
Pw () 1 . .
PW%+(I—PW)VI( if 76,()=0

(25)

where 2,1" 41 is the predicted measurement for target ¢;

with associated innovation covariance S,’j . The constant
P,y 1s used for restricting py,(z,(j)) to the joint vali-
dation region, and has an analytical expression derived
in Appendix A. Using the above equation, (24) can be
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written as

plZ, ‘ @k’mk’zk—l]

= H{N [Zk(j);ﬁ,?lk_l,s,if]}fe<f>

j=1

. 1-16())
% {PWPW;Zk(])) +( PW)%} J .
GW k
(26)

Next, the last term in (23) will be derived. Let 6, be the
vector of detection indicators corresponding to event ©,

g = [04s--,087 1. 27)

The vector o, and the number of false measurements
¢¢ follow from the event O under consideration. Using
the definition of conditional probabilities [20, p. 28],
this yields

P{O | m} = P{©,,60,00 | m;}
=P{O, | 60, 90,m }P{0g,dg | m}.
(28)

The first term in (28) is obtained using combinatorics:

1) In event ©, there are assumed my — ¢ targets
detected.

2) The number of events O,, where the same targets
are detected, is given by the number of ways of associat-
ing m; — ¢g measurements to the detected targets from
a set of m;, measurements.

By assuming each such event a priori equally likely, one

has
1 _ Pe!
P T om !

m” m—de k

P{O; | bg,P0.m} = (29)

The last term in (28) is, assuming 6 and ¢ independent,

]VT
P{ég, 0o | My} = H(Pﬂ)éé"(l —Pé)li%lip((b(—))
=1

(30)

where Bj is the detection probability of target ¢ and
tp(9g) is the prior pmf of the number of false mea-
surements. The indicators 6f, have been used to select
the probabilities of detection and no detection events ac-
cording to the event ©, under consideration. Combining
(29) and (30) into (28) yields the prior probability of a
joint association event

Nr
! 9 st
PO ) = 2T T (1 =B i),
Tr=1

(3D
The pmf of the number of false measurements pi;(¢)

can, as in the case of the PDA, have two versions,
parametric or nonparametric.

122

1) Parametric JPDA uses a Poisson pmf
O\
@!

which requires the spatial density A\ of the false mea-
surements.
2) Nonparametric JPDA uses a diffuse prior

pp(@) =€ Vo

which does not require the parameter \.

pp(g) = eV (32)

(33)

Using the nonparametric model and combining (31)
and (26) into (23) yields the joint association event
probabilities

' NT 1 Gt
Pio, 12y = 2 [[myha — By

t=1

my
x [N TG 2y 13700

Jj=1

: 1-76())
Pw(z () 1
Py +(1-PFy)—
{rPE P ra-rg
(34)
where the constants ¢ and m, ! are brought into the nor-
malization constant c¢. For comparison, the joint associ-
ation event probabilities derived in [3, p. 318] for the
standard JPDAF is

b Vo '
P{O;| 2"} = =——T[] B’ (1 - Ry

t=1

my
x [Nz 2 SUTY9)

Jj=1

(35)

where the third line in (34) is replaced by Vk_‘/’@. As
for the modified PDAF, (34) reduces to (35) in the
limit as £, goes to zero. Finally, marginal association
probabilities are obtained by summing over all the
joint association events in which the marginal event of
interest occurs

B E PO, | 24} = P{O, | Z4)we o)
O
(36)

BUOE1-Y B

j=1

(37

By using these association probabilities in (8), the state
estimation equations are exactly the same as in the
PDAF, (5)-(11).

3.4. Modified JPDACF

The state estimation above is based on the assump-
tion that the targets, conditioned on the past observa-
tions, are mutually independent. When measurements
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are inside the validation gates for two or more targets
at the same time, we say that the targets are “sharing”
measurements. For targets that share measurements for
several sampling times, a dependence of their estima-
tion error ensues, and this can be taken into account
by calculating the resulting error correlations [7]. The
resulting JPDACF algorithm [3, pp. 328-329] does the
filtering in a coupled manner, yielding a covariance ma-
trix with cross-covariances that reflect the correlation
between the targets’ state estimation errors. The effec-
tiveness of the JPDACF approach in combination with
the IMM was demonstrated on splitting targets in [2].
This JPDACF approach does not account for situations
with partial target detections since the association events
where all targets are detected are not separated from
events where only some of them are detected. The asso-
ciation events need to be separated in groups where the
group member events have the same vector of detection
indicators 6y, see (27). This situation was accounted for
in the CPDA filter, derived in [9], where the CPDA in
combination with hypothesis pruning was developed to
avoid track coalescence. In our simulations, however,
the CPDA approach did lead to numerical problems in
the covariance calculations. An equivalent solution to
the CPDA, but where the covariance calculation is in a
symmetrical form, is therefore developed and used in
this paper to avoid numerical problems. The modified
JPDACEF accounting for partial target detections and the
presence of wakes, is derived next.

Assuming only two targets, the stacked state vector
and its associated covariance are denoted as

<1 1 12
S Xklk—1 s B By
by = and P, =
Kk—1 = k=1 =

22 21 2
Xlk—1 Bie-1 Bl

(38)

where Edlkz_l is the cross-covariance between target 1 and
2. This cross-covariance will be zero before these targets
become coupled, i.e., start to share measurements. The
updated state estimate is

X = )Aci\kfl + ZP{@k | ZEWE 15 (©)  (39)
O
where

O = 5O -5, (40)

(,(©))
5(0) = r" } 41)
% 2(r(©)) (

Zipo1 = Ho% (42)

and j,(©,) is the index of the measurement associated
with target ¢ in the event O, at time k. The filter gain in
(39) is

T T _
WP =B<fk—1HS [Hsf;cs\k—lHS + R (43)

MULTITARGET MULTISENSOR TRACKING IN THE PRESENCE OF WAKES

s [H' 0O s [R' O
H° = and R = .
0 H? 0 R?
(44)

The matrices I3 and I§ in (39) are used to choose only
the innovation from the target(s) that are detected, given
by the detection indicator in (20), such that

I§ = bolh, 0 45

6= s (45)
0 &3,

- 51, 0

§ = |- (46)
0 &3,

Here, I, and I, are n,xn, and n, x n, identity ma-
trices, where n, and n_ are the dimensions of a single
target state vector and a single target measurement, re-
spectively. Notice that if a target is undetected in the
joint association event ©, under consideration, the cor-
responding part of the innovation vector needs to be set
to zero even though [ is multiplied to the Kalman gain
WS. This is accomplished by 3.

The updated stacked covariance PkS conditioned

k>
on all measurements up to time k, Zk is derived in

Appendix B and yields

Bj =) P{6,|7"}
O

< {AISWSIE (S (O3 (©) + ROIEWS I3
F U~ ISWIGHOBS, (1~ IZWEIRHS)}

— | D_oP{6 |1 Z WIS (©)
O

T

x| > P{O, | Z MW IE 1 (©) (47)

O

The joint association event probabilities P{O, | Z¥} are
calculated as for the decoupled filter in Section 3.3, and
the prediction step is as in (5), but with stacked state
and covariance.

4. MULTISENSOR TRACKING

The best performance in multisensor data fusion
is achieved using centralized configurations where all
measurements are transmitted from the local sensors to
a fusion center.! Primarily due to the bandwidth con-
straints in real systems, the centralized configuration is
sometimes not feasible because its requirement to trans-
mit all measurement information to a fusion center. This
is the motivation for the interest in decentralized track-

Ut is assumed that the sensors are properly registered and have no
biases.
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ing, with track-to-track association followed by track
fusion, which has been compared to centralized track-
ing in [10], [11]. To make the centralized tracking more
feasible for real systems, the measurement data can be
compressed in the local sensors before they are trans-
mitted [12]. When the measurements are transmitted to
a fusion center in the centralized tracking, there are two
different schemes for the way the state is updated. In
parallel filtering the measurements from all sensors (if
synchronized) are taken into account at the same time.
The other alternative is sequential filtering where mea-
surements from each sensor is processed one sensor at
a time. The first sensor updates the state (and covari-
ance) based on predictions from the previous time step
as in a single-sensor algorithm. Then, this new updated
state is used as a zero-time prediction to update with
the measurements from the second sensor and so on.
In [19] the sequential and parallel filtering schemes are
compared in a multisensor JPDAF approach, and it is
shown that sequential filtering is less computationally
expensive as the number of sensors increases. Accord-
ing to [19], the sequential method yields better track-
ing performance on the average when data association
is needed. This is primarily due to the fact that bet-
ter filtered estimates are available after processing each
sensor’s data.

Another problem regarding multisensor systems is
the positioning of the sensors, where there are several
aspects to consider:

The sensors’ joint ability to cover the required area.
The sensor specifications.

The most likely target locations and trajectories.
The possibility of tracking the targets from various
view angles.

These factors, among others, have to be considered
separately and in light of the main purpose of each
specific tracking problem.

5. SIMULATIONS AND RESULTS

In this section the data association methods de-
scribed previously (PDAF, Modified PDAF, JPDAF,
Modified JPDAF and Modified JPDACF) are compared
in four different multitarget simulation scenarios in the
presence of wakes. These simulations consider an un-
derwater surveillance system with active sonar sensors
and scuba divers as the targets. The wakes are generated
by the air bubbles from the divers. Results are shown
using two sensors, working both as independent single
sensors and together in a centralized tracking system.
When the filters discussed above are used in multisen-
sor (MS) situations in the centralized tracking config-
uration, they will be denoted as MSPDAF, Modified
MSPDAF, MSJPDAF, Modified MSJPDAF and Mod-
ified MSJPDACEF.
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5.1. Simulation Scenarios

The four simulation scenarios are shown in Fig. 4,
and are in the sequel denoted as:

1) Crossing scenario: The targets are starting in
positions (25,32.5) m and (25,67.5) m with speed 1 m/s
and course according to the trajectory crossing angle
v =20° see Fig. 4. The nearly straight trajectories
are crossing the 200 s run midway. In [22] a similar
scenario with varying trajectory crossing angle v =
[5°,6°,...,30°] is simulated for a single sensor, showing
significant reduction of track loss for the modified
filters.

2) Parallel scenario: The targets are starting in po-
sitions (25,40) m and (25,60) m with speed 1 m/s
and course according to the trajectory crossing angle
~v = 15°. When the distance between the targets is less
than 3 m, their velocities are both set to [1,0] m/s, cre-
ating parallel trajectories with 3 m spacing. Then, after
130 s they separate in the same way as they joined each
other.

3) Sequential scenario: The targets are starting in
positions (22.5,40) m and (27.5,60) m with speed 1 m/s
and course according to the trajectory crossing angle
~v = 15°. When the distance between the targets is less
than 0.5 m in the y-direction their velocities are both set
to [1,0] m/s. Since the first target started 5 m behind
the second target in the x-direction, they will now move
after each other in the same direction with about 5 m
spacing. Then, after 130 s they separate in the same way
as they joined each other. Note that Target 1 is moving
inside the wake created by Target 2 before they separate.

4) Meeting scenario: The targets are starting in
positions (25,50) m and (225,50) m with speed 1 m/s
and course directly towards each other. The targets are
passing each other without changing course. Note that
both targets are moving inside the wake of the other one
after the passing.

5.2. Simulation Setup

Two sensors, with the same specifications, are lo-
cated in the positions (0,0) m and (250, 100) m respec-
tively. The sensors have 180° field of view with resolu-
tion about 0.7° in bearing (256 non-overlapping beams)
and 0.2 m in range. Their maximum range of 250 m is
assumed large enough to cover the targets throughout
the 200 s long runs, consisting of 200 scans with sam-
pling period T = 1 s. For both targets a two-dimensional
direct discrete time nearly constant velocity model [4]

is used in (1) and (2):
1 T O
[1 0 0 0]
H=
0010

0
01 00
F =
0 01T
0 0 0 1

(48)
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Fig. 4. Simulation scenarios of two targets observed by two sensors. Four different scenarios are shown. (a) Scenario 1: Crossing
trajectories with trajectory crossing angle v = 20°. (b) Scenario 2: Parallel trajectories where the targets are moving side by side with spacing
d =3 m. (c) Scenario 3: Sequential trajectories where Target 1 is moving behind in the wake created by Target 2, with spacing d =5 m.
(d) Scenario 4: Meeting trajectories where the targets are moving towards each other, and passing each other inside the wake of the other
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TABLE I
Specification of Parameters

Parameter Value Specification
T 1.0s Sampling period
B 0.7 Detection probability
F; 0.99999 Gate probability
By 0.9 Wake probability
Fea 0.001 False alarm probability
ag(s) (0.001 m/s2)2 Process noise (simulation model)
alzl(f) (0.05 m/s2)2 Process noise (filter model)
arz 0.2 m)? Measurement noise (range)
012 (3.5-1073 rad)? Measurement noise (bearing)
N 256 x 1250 Number of resolution cells
S 180°, 250 m range Sensor coverage area
M 250 x40 m Measurement generation area
w 5x30m Wake area
Vs 98174 m? Volume of S
Vi 10000 m? Volume of M
W 150 m? Volume of W
Adlutter 16.3 Expected number of correlated

clutter measurements

The parameters in (48)—(50) and other simulation design
parameters are given in Table L
Originally, the position measurements are in po-
lar coordinates (r,1) with (time invariant) measure-
ment noise covariance Rp, but are transformed to Carte-
sian coordinates (x,y) with corresponding measure-
ment noise covariance R, using the standard conversion
[4, pp- 397-399]. This results in a purely linear model
so that a Kalman filter can be used in the tracking algo-
rithm. The measurement noise matrix R, is calculated
assuming a uniformly distributed position error inside
the resolution cell. Hence, the variance of the uniformly
distributed error is given by the resolution, and this vari-
ance is heuristically used as the variance in the Gaussian
distributed R,
»_ 027 q 2 _ (7/256) o
O'r—?m an JG)—Tra .
(5D

Due to the high resolution in range (0.2 m), the targets
will cover several resolution cells in the range direc-
tion, resulting in extended targets. Because of this, the
actual range resolution is used as the standard devia-
tion (o, = 0.2 m) instead of the calculation in (51). This
modification of ¢, in the simulations seems more rea-
sonable since the targets (scuba divers) are extended
in the range direction. To ensure controlled trajecto-
ries for the true targets, the added process noise in
the simulation model o7(s) = (0.001 m/s*)* is set low,
but not to zero. The process noise in the filter model
Jﬁ(f) = (0.05 m/s?)? is set to approximate about 5 cm/s
change in the velocity components between each scan.

When the targets are following after each other in the
sequential scenario, there will be a problem using the
filter modifications as described above. This problem

especially affects the target following behind the first
target, because there will be wake detections surround-
ing this target both in front and behind it. If the wake
model is used in this situation, the wake-dominated
measurements behind the target will get lower weights
than the wake-dominated measurements in front. These
measurements in front, which originate from the wake
of the first target, will mislead the tracker, and the es-
timated track will speed up until it catches up with the
target in front. It is therefore likely that this target will
be lost. An approach to prevent this is to only apply
the wake model to the target in front, and use a regu-
lar data association filter for the target that is following
the first one. By handling the two targets separately in
two single-target tracking filters, the track of the target
behind the first one will have better chance to survive
in this hard situation. In the simulations a target follow-
ing behind another one will therefore not use the wake
model if the following criteria are fulfilled:

1) The target is inside the wake area W of the target
in front. The wake area W is defined as a rectangle,
L, wide and reaching L, backwards from the target
(L, =5m, L, =30 m).

2) The target is at least 2 m behind the target in
front.

3) The difference between the moving direction of
the following target and the target in front is less than
10°.

To reduce the computational load, the different ver-
sions of the multitarget tracking algorithms are substi-
tuted with their analogous single target tracking algo-
rithms as long as targets are not ‘“sharing” measure-
ments. In other words, the standard PDAF is used in-
stead of the JPDAF, and the modified PDAF is used
instead of the modified JPDAF and JPDACF when the
targets are apart. The multisensor (MS) filters are treated
in the same way, i.e., the MSPDAF is used instead of
the MSJPDAF.

5.3. Measurement Generation

The directional information (bearing) in an active
sonar is given by the beamforming. Since no beamform-
ing can achieve an ideal directivity pattern, there will be
a leakage or scattering of the signal in one beam to the
neighboring beams [16, ch. 5.3]. This is also known
as the point spread function (psf) [25], and may yield
detections from a point target in more than one bearing
cell. In [22] the true target-originated measurements are
simulated as single point detections, which, as described
above, is a simplification of the real world. To generate
measurements from the targets and their wakes in this
paper, detections from a real data set of a scuba diver
with an open breathing system are used. The data set
consists of 500 scans, and is recorded by an active sonar
with the same specifications as the sensors used in the
simulations. The diver is swimming in a nearly straight
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Ilustration of how each detection is specified by using the distance behind the target d and a bearing offset. The bearing offset

describes the number of cells in the bearing direction between a detected cell and the cell where the target trajectory passes through, and
with the same range as the detected one. As an example, the four detections marked with A, B, C and D are the same distance behind the
target, but with offsets —1, 0, 1 and 2 respectively.

line, and its trajectory is estimated mainly by using a
modified PDAF [21], but some manual corrections are
done to get better position estimates. For each scan a cell
averaging—constant false alarm rate (CA-CFAR) detec-
tor [15] is used to obtain the detections. The parameters
of the CA-CFAR algorithm are the same as in [21],
except for the following parameters:

e The average false alarm rate (probability of a false
detection in a resolution cell) is set to Fz, = 0.001.

e The size of the averaging window used to estimate
the local background noise parameter is increased to
51 cells in the range direction due to the increased
resolution of the sensors used in this paper.

For each scan, the detections are stored and specified
by a distance d behind the true target position and
a bearing offset, see Fig. 5. The bearing offset de-
scribes the number of cells in the bearing direction
between a detected cell and the cell where the tar-
get trajectory passes through, and with the same range
as the detected one. As an example, the four detec-
tions marked with A, B, C and D in Fig. 5 are the
same distance behind the target, but with bearing off-
sets —1, 0, 1 and 2 respectively. Finally, after go-
ing through the 500 scans in the real data set, this
gives 500 different sets of detections of the true tar-
get and its wake, where the scattering in the bearing-
direction is accounted for. In the simulations the detec-
tions originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a
first order Markov model. If set s was drawn at scan
k, the probability of drawing the succeeding set s + 1
at time k+1 is 7 (,; = 0.7, and the probability of a
random drawing u € [1,500] (uniformly distributed) is

=1—m . =0.3. The targets’ states are generated
dlrectly from (1), and with the position and velocity
known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or
false measurements, and a standard assumption in sim-
ulations is that clutter is uniformly distributed in the
surveillance area. In this paper the generation of clutter
is done in two steps. The first step is under the standard
assumption, where the probability of generating a clut-
ter measurement in a resolution cell is B, /2 = 0.005,
uniformly distributed across all cells in range and bear-
ing. The second step is to generate spatially correlated
clutter. These measurements are generated from a mul-
timodal Gaussian pdf with equal weights for the dif-
ferent modes. This is an approach to reflect that some
areas in the surveillance region yields more clutter, due
to, e.g., a rough surface of the sea bed, banks, hills,
large stones and other objects that creates variation in
the surveillance area. The multimodal Gaussian pdf is
regenerated for each run, and the number of modes is
drawn as a uniform discrete variable between 1 and 10.
The mean of each Gaussian mode is drawn uniformly
in the surveillance area, and the covariance matrix is
diagonal with standard deviations in the x and y direc-
tions drawn as uniform variables between 0 and 10. The
number of correlated clutter measurements for each scan
is Poisson distributed with parameter A . Denote the
coverage area for a sensor as S (180°, 250 m range),
and the measurement area covering the full trajectories
of the targets as M (250 x 40 m), with volume V; and

Vi respectively. The Poisson parameter A, is then
given by
Vi
)\clutter = O-SPFANVM ~16.3 (52)
s

where F, is the probability of a false alarm in a res-
olution cell, and N is the number of resolution cells
in S. Hence, in average there will be 16.3 correlated
clutter measurements in M for each scan. An example
of all measurements in one time frame for the crossing
scenario is given in Fig. 6. Notice that the detections
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of the targets are more spread out sideways in Sensor 2
than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better re-
solved by Sensor 1. The targets are also moving towards
Sensor 2, and because of the scattering of the signal to
the neighboring beams, the detections will be spread
out more sideways from the direction of motion. Also
notice how in some places the detections are located in
groups due to the non-uniform spatial distribution of the
clutter measurements. It is also possible that a target can
be undetected, which is the case for the lower target at
Sensor 1 in Fig. 6.

5.4. Track Formation and Termination

As can be seen in Fig. 6, the targets are often de-
termined by a cluster of detections rather than a single
point detection. In the simulations the tracks are initial-
ized by two-point differencing [4, p. 247] of the cluster
centroids from succeeding scans. The reason for this is
to avoid confusion due to the many possibilities of two-
point differencing that could have been set up among
the point detections from one single target. The cluster-
ing method of the single point detections is described
in [21], and is based on mathematical morphology [23].
Any successive pair of clusters within a maximum dis-
tance based on target maximum motion parameters and
cluster measurement noise variances initiates a prelimi-
nary track. For the motion parameters, a maximum dis-
tance d,,,, = 1 m together with the process noise matrix
Q in (2) is used. The measurement noise for the clusters
is computed from the different cells included in the clus-
ter as a Gaussian mixture [4, pp. 55-56]. A preliminary
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Snapshot of all detections/measurements at Sensor 1 and Sensor 2 during a run in the crossing scenario.

track has to receive measurements for a minimum of 4
time steps during the first 6 scans to become a confirmed
track. This is also referred to as a “4/6” logic-based track
formation procedure. Note that the clustering method is
only used for the two-point differencing in the track
initialization.

In the centralized tracking the multisensor filtering
is described in Section 4, first updating with measure-
ments from Sensor 1 and then with measurements from
Sensor 2 in a sequential updating scheme. The track ini-
tialization in the centralized tracking algorithm is based
on measurements that also contain velocity information.
First, the two-point differencing is used at Sensor 1 to
make an initial state. Then, the two-point differencing
is used at Sensor 2, but these initial states are now used
as measurements (including both position and velocity)
to update the initial state from Sensor 1. The updating
is done as in a regular PDAF, but since these measure-
ments are formed by two-point differencing of cluster
centroids from succeeding scans, they will not have the
same measurement noise, yielding a varying innovation
covariance (S, in (6)). The innovation covariance is nor-
mally used to form the measurement validation gate in
the PDAF, but in this case a fixed matrix

2, 0 0 0
2 0

S o (53)
o 0

is used instead of the non-constant innovation covari-
ance to form a constant measurement validation gate.
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The values used in S, is set based on the assumption
that the standard deviation for these measurements are
about 1 m for the position elements, and 0.5 m for the
velocity elements (o,,,, = 1 m and o, = 0.5 m).

In the modified filters, the wake assumption also af-
fects the track initialization in the way that measure-
ments inside the wake area W (defined in Section 5.2)
are excluded in the initialization procedure.

To terminate a track one of the following events
(termination events) must occur:

1) The estimated speed is outside the interval
[Vinin> Vmax > Where v .. = 0.1 m/s and v, = 3 m/s.
2) The estimate moves more than 5 m between two
scans.
3) The position state estimation variance exceeds
Posmax> Where o2 =50 m?,
4) There are no validated measurements received in
a track within 5 successive scans.
5) The track is closer than d_ ;| to another older track

during 10 succeeding scans, where d,;, = 0.5 m.

g

These track termination criteria are adopted rather
than using more rigorous methods, such as the joint
version of the IPDAF [17], because of their sensitivity to
inaccurate estimates of the clutter density. In real sensor
measurements, the signal is often scattered resulting
in more than one target-originated detection. This will
increase the clutter density resulting in an unrealistic
low probability for the track to survive. This may be
solved by the use of clustering, but for targets in the
presence of wakes it is undesirable to blend the wake-
originated detections together with the target-originated
ones. The above termination criteria are more strict than
those used in [21] due to the higher sensor resolution
used in this paper.

5.5. Performance Analysis

The performance evaluation of a multitarget tracking
system is always a difficult problem, and the quality of
the results is difficult to quantify in terms of a few vari-
ables. When the evaluation is based on real data, where
not all parameters are known, this problem becomes
even harder. The results also depend on the simulation
scenarios, and the performance of the JPDAF may, ac-
cording to [13], show large local maxima and minima
as a function of scenario parameters. However, by con-
sidering the basic scenarios described above and using a
relatively large set of measures of performance (MOP),
a certain amount of meaningful information should be
obtained. The MOP considered are the following:

1) The percentage of lost tracks among all true
tracks.

2) The percentage of swapped tracks among all true
tracks (measured only when the targets are closer than
10 m).

3) The average fraction of each trajectory’s total
duration where the target is tracked (by a true track).

4) The average life length of a true track relative to
its true target’s life length.

5) The average time for target acquisition.

6) The number of false tracks per scan.

7) The average life length of a false track.

8) The position RMS error.

This section describes how these MOP are obtained
before the corresponding results, based on 500 Monte
Carlo runs for each of the four given scenarios, are
shown. At a given time k there might exist several
tracks, but for each target, at most one of them can
be defined as true. The rest of the tracks are therefore
by definition false. A track is first defined as true if
the position estimation error is less than 1 m during
the next 5 scans, and at the same time there are no
other true track associated to the target. If there is more
than one track fulfilling these requirements at the same
time, the track with lowest average position estimation
error during these 5 scans is defined as the true one.
The true track will stay as such until either the position
estimation error exceeds 5 m, or the position estimation
error associated to a neighboring target is less than 1 m
during the next 5 scans. In both situations the track will
be declared as lost, but in the latter case it will also be
defined as a swapped track.

1) The percentage of lost tracks among all true tracks:
In Fig. 7 the percentage of lost tracks is shown. The
standard filters (PDAF and JPDAF) have the highest
track loss percentage, and the JPDAF shows no im-
provement compared to the PDAF. The modified sin-
gle target tracking algorithm (PDAF) performs better
than the standard filters, but the best performance is
achieved with the modified JPDAF and JPDACF. The
difference between the standard filters and the modified
PDAF is largest in the meeting and crossing scenarios
where the targets are close to each other during a short
time. When the targets stay together for a longer period
of time, the modified PDAF is not significantly better
than the standard filters because it does not account for
the neighboring target and its wake like the modified
JPDAF and JPDACF do. Also notice that there is al-
most no difference between the decoupled and coupled
modified JPDAF, which indicates that the correlation
between the targets’ estimation errors is insignificant.

In the different scenarios considered the best per-
formance is achieved for the meeting scenario. This is
maybe a bit surprising since the density of the joint wake
model after the passing is lowest between the targets, the
area opposite to their moving direction. However, the
high wake density in the whole joint validation region
will at the same time give more confidence in the pre-
dicted target motion than the measurements. Because of
this, and the fact that the velocities of the two targets are
totally opposite to each other, the tracks will be less af-
fected by the false measurements. The percentage of the
lost tracks in the crossing scenario is the next best, and
the good performance in both the meeting and crossing
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Fig. 7. Average percentage of lost tracks in the four simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2: Parallel
trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

scenarios is as expected since the targets are only close
to each other a short time. In these scenarios the results
from the single sensor filters are almost as good as from
the multisensor filters in the centralized tracking. This
is not true for the parallel scenario where the perfor-
mance is significantly improved by fusing the sensors’
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data in the modifed MSJPDAF and MSJPDACEF. In this
scenario the targets are separated by only 3 m, which
is close to the limit for having multiple targets in a sin-
gle resolution cell (unresolved targets). By using two
sensors in this situation, Sensor 1 resolves the targets
relatively good in the beginning of the run, and Sen-
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sor 2 does the same at the end of the run. Because of
this, the fusion of these two sensors data improves the
performance significantly.

The most difficult scenario is the sequential, where
a target is moving behind another target, surrounded by
the wake. In this case the centralized tracking performs
best, and a track loss under 40% is achieved by the
modified MSJPDAF and MSJPDACEF. In practice this
means that, even in a hard case like this, at least one
track will be kept throughout the run.

2) The percentage of swapped tracks among all true
tracks (measured only when the targets are closer than
10 m): The percentage of the swapped tracks, shown
in Fig. 8, is only measured when the distance between
the targets is less than 10 m. The reason for this is
to find the percentage of swapping among only the
tracks where the two associated targets are close to
each other. The swapping is, as expected, highest in
the parallel scenario where the tracks are moving in
parallel for a longer period of time. In this situation it is
easy for a track to switch over to the neighboring target
only 3 m away. In the meeting scenario the swapping
phenomenon is totally absent for the modified filters,
and practically absent for the standard filters (PDAF and
JPDAF). The reason for this is the same as discussed
under the previous MOP.

The modified PDAF has the most problems, espe-
cially in the parallel scenario, since it accounts for its
own wake, but does not take into consideration that there
is another target in the surrounding area. The standard
filters, which do not consider the wakes, are more dis-
posed to turn into their own wake than to swap to the
neighboring target. Therefore, even if their track loss is
higher, they have a lower swapping percentage than the
modified PDAF.

The best performance is achieved by the modified
MSJPDAF and MSJPDACEF in the centralized track-
ing. This improvement is most significant in the parallel
scenario, where the percentage of swapped tracks
are almost halved for the modified MSJPDAF and
MSJPDACF compared to the other filters.

3) The average fraction of each trajectory’s total
duration where the target is tracked (by a true track): In
Fig. 9 the average percentage of the tracked part of the
trajectories’ duration is shown. Also here the modified
JPDAF and JPDACF perform best, and by using the
modified MSJPDAF or MSJPDACEF in the centralized
tracking, about 90% of the trajectories are tracked.
Notice that the percentage of the tracked trajectory can
be very good even with a high track loss percentage if
tracks are quickly reacquired after a loss. It is therefore
important to consider other MOP to get the total picture.

4) The average life length of a true track relative to
its true target’s life length: 1In Fig. 10 the average life
length (in %) of the true tracks is shown. It is clear
that the track length is significantly increased by the
modified filters, and most by the modified multitarget
tracking filters (JPDAF and JPDACEF). The best perfor-

mance is achieved by the modified filters in the meeting
scenario, where the average track length is about 80%
of the true target’s life length, more than twice as long
as for the standard PDAF and JPDAF. The improve-
ment by using multiple sensors is most significant for
the modified MSJPDAF and MSJPDACEF in the paral-
lel scenario. In this situation the combination of both
using the multitarget wake model, and for the targets
to be well resolved by at least one sensor all the time
throughout the run, is vital. In the sequential scenario
the best track length is almost 60% for the same modi-
fied multisensor filters. This is due to the fact that when
a track is first lost inside the wake of another target in
front, it is very hard to reacquire a track on the rear
target.

5) The average time for target acquisition: In many
situations it is important to quickly initiate tracks and
reacquire them once lost. Let the time for target ac-
quisition be the time before a track is defined as true
either in the beginning of a run or after a track was
lost. The average time for target acquisition (or reac-
quisition) is shown in Fig. 11. For the crossing, the
parallel and the meeting scenarios, the modified fil-
ters perform slightly better than the standard filters. At
the sequential scenario the behavior is different in the
way that the standard filters outperform the modified
filters. This is due to the assumption that the measure-
ments behind a target originate from a wake and not
a target. Therefore, when the target following the tar-
get in front is lost, the real target-originated measure-
ments will not be considered for a new track as long
as they are inside the wake area W of the target in
front.

In the first three scenarios it is harder to initi-
ate/reacquire true tracks at Sensor 2 than for Sensor 1.
The reason for this is that tracks are starting close to
Sensor 1, and far from Sensor 2, and the detections of
the targets (and wakes) will therefore be more spread
out in the view of Sensor 2. This can be seen in Fig. 6,
and makes it harder to acquire tracks in the two-point
differencing of the cluster centroids from succeeding
scans.

6) The average life length of a false track: As men-
tioned above, all tracks that are not defined as true, are
considered false. The average life length of a false track
is shown in Fig. 12, and the performance is almost the
same for all filters, with an insignificant tendency for
shorter life length of the false tracks in the modified
filters.

7) The number of false tracks per scan: Another
MOP considering the false tracks, is the average number
of false tracks per scan, shown in Fig. 13. This number
is higher for the standard filters than for the modified
ones because the standard filters do not restrict the track
formation inside the wake areas behind the targets. Also,
there are more false tracks for the centralized tracking
due to the fact that this tracking algorithm takes into
account false measurements from both sensors.
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Fig. 8. Average percentage of swapped tracks in the three simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2:
Parallel trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

8) The position RMS error: The last MOP in this
analysis is the position RMS error, given in Fig. 14.
The RMS error is based only on the true tracks in
the simulation scenarios. In all scenarios the position
RMS error is larger for the standard filters than for the
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modified filters. This is because the standard filters do
not consider the wake-originated measurements like the
modified filters do, and the state estimate is therefore
likely to be drawn into the wake. It can also be seen
that the RMS error, at least for the modified JPDAF
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Fig. 9. Average percentage of tracked trajectory in the four simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2:
Parallel trajectories. (c) Scenario 3: Sequential trajectories. (d) Scenario 4: Meeting trajectories.

and JPDACE, is slightly reduced in the centralized track- is seen as a “jump” in the error when the targets
ing. are crossing between 80 s and 120 s. In the parallel

In the two first scenarios (crossing and parallel), scenario, this jump starts at about 60 s and ends at
the error increases during the periods when the targets 140 s, which are the period the targets are moving in
are close to each other. For the crossing scenario this parallel. In these situations the estimate for one target
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will be drawn towards the other target, also known
as track coalescence [8]. Among the modified filters,
this is most problematic for the single target tracking
algorithm because it accounts for the wake behind its
own target, but has no information about the nearby
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target which also has a wake behind it. The modified
multitarget filters perform similarly, and their RMS
errors are almost constant throughout the run.

In the meeting scenario only a small tendency of the
jump phenomenon is noticeable shortly after the pass-
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ing. As discussed above, the totally opposite velocities In the sequential scenario the targets are never closer
of the two targets and the high wake density in the whole than about 5 m, so the RMS error does not increase
joint validation region, make the targets’ passing rela- much during the period the tracks are following after
tively easy. each other. In this scenario, the modified single target
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tracking filter performs better than the modified multi- is larger for the target behind the one in front, because
target tracking filters. The reason for this is because the it is surrounded by wakes. From the percentage of lost
RMS error is measured only among the true tracks, not tracks in Fig. 7, the modified single target filter will
when they become lost. In this scenario, where the tar- lose the target more often than the modified multitarget
gets are following after each other, the estimation error filters, and it is most likely that the lost target is the
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Fig. 13. Average number of false tracks per scan in the four simulation scenarios. (a) Scenario 1: Crossing trajectories. (b) Scenario 2:
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one with largest estimation error. Therefore, when the
RMS error is calculated, the modified multitarget filters
are based on tracks with larger estimation error than
what the modified single target filter is based on, only
because these tracks were not lost.

5.6 Usage of the Wake Model on Targets Without

Wakes

In this section the erroneous use of wake models on

targets without wakes is considered. The crossing sce-
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Position RMS error from 500 Monte Carlo runs in: (a) Scenario 1: Crossing trajectories, (b) Scenario 2: Parallel trajectories,

(c) Scenario 3: Sequential trajectories, (d) Scenario 4: Meeting trajectories.

nario (see Fig. 4) is used as before, but without wakes
behind the targets.” Each target is simulated as a point-
target (only one measurement) with detection probabil-
ity A, = 0.7, independently across time. The results after
500 Monte Carlo runs are shown in Fig. 15, and the
performance is clearly better than in the wake-scenario
due to the fact that each target is never simulated by
more than one detection at a time. This shows that the
scattering effect in real sensors, due to the beamforming,
makes the tracking problem considerably harder and is
an important element in further research.

2This would correspond to “closed breathing system” scuba divers or
mechanical underwater vehicles.
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It is also interesting to see that even though the mod-
ified PDAF performs worse than the standard PDAF,
the modified multitarget algorithms perform almost the
same as the standard JPDAF. This indicates that apply-
ing the modified JPDAF or JPDACEF on targets without
wakes will not degrade the tracking performance. For
tracking in environments with different kinds of tar-
gets, with and without wakes, this is a desirable prop-
erty.

Another issue worth mentioning is the increasing
trend of the position RMS error for Sensor 1, and
the decreasing trend for Sensor 2. This is due to the
fact that the estimated position error increases with the
distance to the sensors, and the targets are starting close
to Sensor 1, and moving towards Sensor 2. Notice how
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Fig. 15. Simulation results from the crossing scenario where the probabilistic wake model is erroneous applied to targets without wakes.
Each target is simulated as point detections with detection probability A, = 0.7, independent across time. The different features discussed in
Section 5.5 are shown.

these trends in the single sensors are averaged out in case than in the previous cases where the targets had
the centralized tracking where the sensors’ data are wakes. This gives an another justification of using mul-
fused. tiple sensors when tracking targets in the presence of

It is also shown that the use of multiple sensors is wakes, because a target could be mistaken for having a
more effective in preventing lost tracks in this special wake even when it does not have one.
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6. CONCLUSIONS

An important factor in a multitarget tracking sys-
tem is to correctly associate each measurement received
from a detector to its origin. The JPDAF has been a
solution to this problem due to its effectiveness and
low computational demand. In the JPDAF all false mea-
surements are assumed due to i.i.d. uniformly spatially
distributed noise or clutter. This assumption is not ade-
quate for targets that generate wakes, because detections
originating from the wake are not uniformly distributed
and may result in a lost track if they are not properly
modelled. The solution presented incorporates a model
of the wakes behind the targets in a multitarget envi-
ronment. The purpose of this wake model is to weight
wake-originated measurements lower than in a regular
JPDAF to avoid the tracks following these measure-
ments and therefore be forced to turn into the wake.
To achieve this, we presented a model formed by the
sum of single models each linearly increasing behind
their associated targets.

A systematic comparison of the standard data as-
sociation filters (PDAF and JPDAF) and their corre-
sponding modified versions are presented in a multitar-
get multisensor environment. Four different simulation
scenarios are examined where two targets in the pres-
ence of wakes are crossing, moving in parallel to each
other, one following after another, and finally meeting
and then passing each other. It is shown that the wake
model presented is a useful modification of the JPDAF
in all four scenarios. The only stated drawback using
the wake model is when a target is moving after another
one, surrounded by the wake from the target in front.
In that case, if the rear target is lost, it is harder to reac-
quire the track because the measurements are assumed
originating from the wake and not the true target.

This paper also presents the coupled version of
the JPDAF, called JPDACF, and a modified JPDACF
(with a wake model) is developed and tested. The
simulations show that the modified JPDACF is not
improving the performance compared to the simpler
modified JPDAF, indicating that there is no significant
correlation between the targets’ estimation errors.

The simulation scenarios consider two sensors, and
the data association filters at the local sensors are
compared with multisensor (MS) filters in a central-
ized tracking configuration. A sequential state updating
scheme is used in the multisensor filters, and the results
show that the data fusion provides significant improve-
ment in the tracking performance.

This paper also examines the effect of applying
the wake model on point-targets without wakes. The
results show that the modified JPDAF and JPDACF
perform almost the same as the standard JPDAF. This
makes the modification practical for real systems where
both targets with wakes and targets without wakes are
operating in the same environment.
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L \

Fig. 16. Specification of variables for integration of the wake
model, with length L; and width L, inside the joint validation
region with center ¢ and radius r. The wake has front corners [a p]
and [ p] and is oriented behind the target with position z and
velocity v.

APPENDIX A. SPECIFICATION OF THE JOINT WAKE
MODEL

In this appendix the joint wake model py,(z,) in-
troduced in Section 3 is presented, and an analytical
expression for the probability Fy, is derived. The joint
wake model is the sum of all N; single wake models
Ply(z,) behind each target ¢ under consideration

1 &
Pw(z) = 37> Py (@0). (54)
T =1

Next, consider the single wake model pj,(z,) of target
t, and let 7 and v be the predicted position and velocity
of the target, respectively. Reference to Fig. 16 may
be helpful in the following. The single wake model is
assumed linearly increasing with length L; behind the
predicted position of the target, i.e., in the direction
opposite to v, and uniform with width L, in the direction
perpendicular to the target’s velocity v. This model can
be expressed by defining the independent variables [
and w as the respective distances behind and sideways
(relative to v) to the target. From the above assumption,
[ and w have the following densities

21
Pb=7  0<i<L
(55)
W=  O<w<lw
P =T ="=7
which yields
, 21
Pw(z) = p(Dp,,(w) = (56)

2L,
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Notice that even though a current estimate of the veloc-
ity v is available in the filter, a better way in practice is
to use an average of the latest estimates since the wake
will not change direction as rapidly as the current target
velocity estimate. In the simulations an average of the
latest 6 estimates is used.

The joint validation region containing all candidate
measurements in the multitarget environment is defined
as a circle with radius r and center c. The center c is
calculated as the average between all the predicted target
positions, and the radius r is defined as the distance to
the farthest validated measurement.

The probability F;y in (25), used to restrict the
density of the joint wake model py(z,) to the joint
validation region, has to be calculated for each scan
by integration of py,(z,) inside the region. Since py,(z;)
is the sum of all single wake models pj,(z;), Py is
obtained by calculating By, for each target ¢ and then
summing them up

IVT
Fow = ZP Gw-
=1

(57

The calculation of Py, is derived next. Assume a Carte-
sian coordinate system with origin at position ¢ and
y-axis parallel to v but in the opposite direction, see
Fig. 16. Define the two front corners of the wake model
with elements « and f for the x-axis, and p for the y-axis

=(c=2"v/p|

p
a=1/lc—z]>—p>—w/2

B=1/lc—z]>=p*+w/2.

(58)

The integration depends on if the front corners [a p]”
and [3 p]” are inside or outside the joint validation
region (circle), and will be broken into one, two or three
parts. To do this, define three binary variables 6 , ¢, and
64 as follows:

1 if p<O0
6, = ) (59)
0 otherwise
1 if v/a?+p*>
5, = { e (60)
0 otherwise
1 if /B2+p2>r
5, = { T (61)
‘ 0 otherwise
Then the integral can be written as
2 e
PGW L2L /max(a —r) /— rzfxz (y - p)dy a
B9 485/ 722 p/ra?
+ / / (y —pydydx
a(1=84)—=ba /1% —p?
min(3,r)
+6,6; / / (yfp)dydx .
(62)
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For simplicity we substitute the limits of integration
along the x-axis as follows:

a = max(a, —r)
b=\t —p
8,) = 8, \/12 = p?
d=B(1—85)+85/r2—p?

e=/r2—p?
f =min(3,r)
which yields

Fow = L2L { / / (yfp)dydx
d V2
+ / / (v — p)dydx
c Jp
;o2
+ 6p6ﬂ/ / (y — p)dydx
e JNRP2
=L 2 (aresin € — arcsin &
=7 pre | arcsi p arcsi -

1w
_ 3
d +2p6,8, (a\/rzfasz\/rzflﬂ)

—c(P?+r7)+ 2p648, (e\/r2 —e? —f\/r2 —fz)

c=a(l—

(63)

3

C
+

+ a’(p2 +r)+ 2pé, 6pr2 (arcsin g — arcsin g)
+pc\/rt—c+ 2p§‘36‘pr2 (arcsin% — arcsin é)
—pdr/r? 7d2}.

(64)

APPENDIX B. COVARIANCE UPDATE IN THE
MODIFIED JPDACF

In this section the updated stacked covariance for
the JPDACEF in (47) is derived. The updated covariance
B(fk, conditioned on all measurements up to time k, zk,
is

Bcfk =E {[xf -

Bl =307 1 255 (65)

This can be expressed as a weighted sum of all joint as-
sociation event conditioned estimation error covariances
by using the total probability theorem

By =Y P{Oy1Z"}

Ok

x E{lq — %l — %17 [ Z5,6,}. (66)

Let )Ack‘k((%) be the state estimate conditioned on the
joint association event ©,. By using this, (66) can be
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rewritten as Substituting (under the assumption that all targets are

observed)
RS =Y P(e,17") N
O v (0) =22(0) —H F Xy
xE {[(xf —}i\k(@) + ii\k(@) —%f\k)] =HFSx] | +H5v | +w} _HSstcf—l\k—l
X[(f = 55,(0) + £, (©) = F1T | 25,0, } = H P55 + Hvi_ + W} (73)

in (72) yields
= P{e,z"
o ¥(O) = - IEW IZH?)F%_,

< E{(f = 06 - @) (- IWSIEHSWS | — WSy

+ (0 — H(ONE(©) — H" (74)

ns N PR - Using this in (71) gives

+(Xk‘k(@)ka‘k)(xk *x}f\k(@)) S 1 1SS R
N N . . Fy = -IgW2IH )Bc\k—l(l_l(—)vvk I§H”)
EGHORSREROR FACHY:

- ZP{@k |Zk} where
O

x E{(q} — X ONGg — 3, 00" | 25,6,}

+ISWSIERSIZWS' I (75)

B =FSBS  \FS" + Q5. (76)

In (75) the assumptions in (2) are used together with
+ Z P{o, | Z"} the following independence assumptions between the
o estimation error and the two noises

X (3,(0) =3 )G (0) - 3 )T E{x 1250, =0 (77)
=S P{e,|Z" E{x w750, =0. (78)

O

s A § - S The last term P in (67) is
x E{(xp — X (©)(x —xgu(©)" | 25,6, }

P =" P{O, | 245 4(0)35,(0) — i, Gf)T

Py

O
* 2 PO Z R OO Ty’ = 3" P{O | 2y + IEWE I ©))
O -
O
7 xRy + W IV ©)
=> P{6,[Z"}Ry +P (67)
O S ky xSz, S
+ P{O, | Z"} [ZW 1 (C]
where the identity (xklkl ;k 1O [ ZFHa W L5 vic( ))
> _P{e,z} =1 (68) r
> x| Ber + Y P{O | Z AW I51(©)
is used together with the fact that O
%(0) = E{x | Z*.6,} (69) (79)
A5 A which after cancellations becomes the spread of inno-
xf\k = GZP{Gk |z }xk\k(@)' (70) vations
k
D _ kypxywSyz S ST §Tyx
Next, B, in the first term of (67) will be derived P = ZP{@k | ZFHEW TG v (@) (©) 16 We I
O
By = E{(x) — %, (O)0 X ©0)" |20} (T1)
where the conditioned estimation error is - (ZP{@k | ZYIEWS T8 (@))
#(©) =x —3,(0) %
T
=FSx$  +vd | —FS% —IEWSIZU3(0).
k—1 k—1 k—1]k—1 0"k T0%k % ZP{@k |Zk}lg)VVkSIéV]f(@) . (80)
(72) Ok
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Using (80) and (75) in (67) yields the updated stacked
covariance

B =Y P{6,]Z"}

O
X T X
x {Iew,f 2SO (O) + ROIEWSTE

U = ISWEISHO )RS\~ ISWS IS HS)' |

o DA CAVANI A A A C)
O
T

A D CAVAI A RAHC) 81)
O
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